4.6 Article

Experimental analysis and numerical simulation of sintered micro-fluidic devices using powder hot embossing process

期刊

出版社

SPRINGER LONDON LTD
DOI: 10.1007/s00170-018-2509-5

关键词

Hot embossing process; Sintering; Finite element simulation; 316L stainless steel powders

向作者/读者索取更多资源

For the past 2years, interest in manufacturing technologies based on micro-fluidic systems has been continuously increasing. Today, micro-fluidic systems are used in numerous biomedical and pharmaceutical applications. Micro-fluidics cannot be thought about separately without advances in micro- and nano-fabrication. Investigations based on experiments, finite element modelling and simulations of powder hot embossing process (PHE) were performed to optimise the sintering step and processing parameters of micro-fluidic components. The model pertaining to thermo-elasto-viscoplastic behaviour was identified for 316L stainless steel powders. In this regard, different material properties such as sintering stress, bulk, and shearing viscosities were identified by inverse analysis from present dilatometer measurements using beam-bending and free sintering tests. The identification of materials was performed for various powder volume loadings and kinetic rates for different 316L elaborated feedstock, and the parameters were obtained as functions of relative density. The initial inhomogeneity due to the PHE process has been taken into account in the sintering simulation, as it affects the final shrinkage of the sintered components. The solid-state sintering simulations were investigated for various final sintering temperatures and kinetic rates to obtain high and homogeneous relative density distributions, achieve isotropic shrinkage and optimise the sintering process parameters. The numerical simulations were realised based on the identified parameters on a 3D micro-structured specimen with an associated rectangular plate support elaborated by PHE; this allowed a comparison between the numerical predictions and the experimental results for the sintering stage. The finite element simulation results of the sintering stage with a micro-fluidic structured component at a high final temperature (1360 degrees C) are in excellent agreement with the results of the experiments. The comparison of the simulation and experimental results validated the identified and implemented physical model and proposed methodologies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据