4.6 Article

Bayesian regularization-based Levenberg-Marquardt neural model combined with BFOA for improving surface finish of FDM processed part

期刊

出版社

SPRINGER LONDON LTD
DOI: 10.1007/s00170-011-3675-x

关键词

Rapid prototyping; Desirability; Multi-objective optimization; Chaotic sequence; Bacteria foraging

向作者/读者索取更多资源

Fused deposition modeling has a complex part building mechanism making it difficult to obtain reasonably good functional relationship between responses and process parameters. To solve this problem, present study proposes use of artificial neural network (ANN) model to determine the relationship between five input parameters such as layer thickness, orientation, raster angle, raster width, and air gap with three output responses viz., roughness in top, bottom, and side surface of the built part. Bayesian regularization is adopted for selection of optimum network architecture because of its ability to fix number of network parameters irrespective of network size. ANN model is trained using Levenberg-Marquardt algorithm, and the resulting network has good generalization capability that eliminates the chance of over fitting. Finally, bacterial foraging optimization algorithm which attempts to model the individual and group behavior of Escherichia coli bacteria as a distributed optimization process is used to suggest theoretical combination of parameter settings to improve overall roughness of part. This paper also investigates use of chaotic time series sequence known as logistic function and demonstrates its superiority in terms of convergence and solution quality.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据