4.6 Article

Application of backpropagation neural network for spindle vibration-based tool wear monitoring in micro-milling

出版社

SPRINGER LONDON LTD
DOI: 10.1007/s00170-011-3703-x

关键词

Tool wear; Microcutting; Monitoring; Neural network; Vibration

资金

  1. Taiwan Department of Economics [97-EC-17-A-05-S1-101]

向作者/读者索取更多资源

This study develops a micro-tool condition monitoring system consisting of accelerometers on the spindle, a data acquisition and signal transformation module, and a backpropagation neural network. This study also discusses the effect of the sensor installations, selected features, and the bandwidth size of the features on the classification rate. To collect the vibration signals necessary for training the system model and verifying the system, an experiment was implemented on a micro-milling research platform along with a 700 mu m diameter micro-end mill and a SK2 workpiece. A three-axis accelerometer was installed on a sensor plate attached to the spindle housing to collect vibration signals in three directions during cutting. The frequency domain features representing changes in tool wear were selected based on the class mean scatter criteria after transforming signals from the time domain to the frequency domain by fast Fourier transform. Using the appropriate vibration features, this study develops and tests a backpropagation neural network classifier. Results show that proper feature extraction for classification provides a better solution than applying all spectral features into the classifier. Selecting five features for classification provides a better classification rate than the case with four and three features along with the 30 Hz bandwidth size of the spectral feature. Moreover, combining the signals for tool condition from both direction signals provides a better classification rate than determining the tool condition using a one-direction single sensor.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据