4.6 Article

Finite element simulation of earing defect in deep drawing

出版社

SPRINGER LONDON LTD
DOI: 10.1007/s00170-009-1963-5

关键词

Deep drawing; Earing; Elasto-plastic analysis; Finite element method

向作者/读者索取更多资源

Deep drawing is an extensively used press working process since it eliminates expensive machining and welding operations and enables the production of components at a very high rate. The workpiece material used in a deep drawing process is anisotropic in nature, due to a prior thermomechanical treatment. Earing is one of the major defects observed in a deep drawing process due to the anisotropic nature of the sheet material. Knowledge about the ear formation in deep drawing allows a prior modification of the process, which can result in a defect-free final product with financial savings. In this paper, a recently proposed anisotropic yield criteria by Barlat et al. for rolled sheets is used to model the anisotropy for simulating the earing defect in square and circular cup drawing processes. The effect of the tooling geometry and process parameters on the ear formation is studied. It is shown that, in the square cup, the uneven metal flow rate, rather than the material anisotropy, is mainly responsible for the flange earing. Finite element formulation, based on the updated Lagrangian approach, is employed for the analysis. The stresses are updated in a material frame and the logarithmic strain measure is used, which allows the use of a large increment size. Isotropic hardening is assumed, and it follows a power law. Inertia forces are neglected due to small accelerations. The modified Newton-Raphson iterative technique is used to solve the nonlinear incremental equations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据