4.6 Article

Material flow stress and failure in multiscale machining titanium alloy Ti-6Al-4V

出版社

SPRINGER LONDON LTD
DOI: 10.1007/s00170-008-1521-6

关键词

Material property; Material failure; Titanium Ti-6Al-4V; Micromachining

资金

  1. University of Alabama

向作者/读者索取更多资源

Titanium Ti-6Al-4V alloy is a typical difficult-to-machine material due to its unique physical and mechanical properties. The material properties of Ti-6Al-4V play an important role in process design and optimization. However, the dynamic mechanical behavior is poorly understood and accurate predictive models have yet to be developed. This work focuses on the dynamic mechanical behavior of machining Ti-6Al-4V beyond the range of strains, strain rates, and temperatures in conventional materials testing. The flow stress characteristics of strain hardening and thermal softening can be predicted by the Johnson-Cook model coupled with the adiabatic condition. The predicted flow stresses at small strains agree very well with those from the split Hopkinson pressure bar (SHPB) tests, while the predicted flow stresses at large strains also agree with the calculated flow stresses based on the cutting tests with a suitable depth of cut. Heat fraction and temperature parameter control the range of thermal softening and the decrease rate of flow stress. The material may exhibit super plasticity at a small depth of cut with a large radius of the cutting edge in micromachining. Strain rate is one important factor for material fracture close to the cutting edge. The failure strain increases linearly with the increase of homologous temperature, while it only increases slightly with the strain rate.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据