4.4 Article

Non-Newtonian blood flow study in a model cavopulmonary vascular system

期刊

出版社

WILEY
DOI: 10.1002/fld.2256

关键词

wall shear stress; haemodynamics; shear thinning; TCPC; finite element; recirculation zone

资金

  1. EPSRC [EP/H024271/1] Funding Source: UKRI
  2. Engineering and Physical Sciences Research Council [EP/H024271/1] Funding Source: researchfish

向作者/读者索取更多资源

A transient haemodynamic study in a model cavopulmonary vascular system has been carried out for a typical range of parameters using a finite element-based Navier-Stokes solver. The focus of this study is to investigate the influence of non-Newtonian behaviour of the blood on the haemodynamic quantities, such as wall shear stress (WSS) and flow pattern. The computational fluid dynamics (CFD) model is based on an artificial compressibility characteristic-based split (AC-CBS) scheme, which has been adopted to solve the Navier-Stokes equations in space-time domain. A power law model has been implemented to characterize the shear thinning nature of the blood depending on the local strain rate. Using the computational model, numerical investigations have been performed for Newtonian and non-Newtonian flows for different frequencies and input pulse forms. The haemodynamic quantities observed in total cavopulmonary connection (TCPC) for the above conditions suggest that there are considerable differences in average (about 25-40%) and peak (about 50%) WSS distributions, when the non-Newtonian behaviour of the blood is taken into account. The lower WSS levels observed for non-Newtonian cases point to the higher risk of lesion formation, especially at higher pulsation frequencies. A realistic pulse form is relatively safer than a sinusoidal pulse as it has more energy distributed in the higher harmonics, which results in higher average WSS values. The present study highlights the importance of including non-Newtonian shear thinning behaviour for modelling blood flow in the vicinity of repaired arterial connections. Copyright (C) 2010 John Wiley & Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据