4.4 Article

Positive-definite q-families of continuous subcell Darcy-flux CVD(MPFA) finite-volume schemes and the mixed finite element method

期刊

出版社

WILEY
DOI: 10.1002/fld.1586

关键词

convergence; subcell; family of flux-continuous finite-volume schemes; permeability tensor; quadrature parametrization and pressure equation; CVD; MPFA; mixed finite element methods

资金

  1. Engineering and Physical Sciences Research Council [GR/S70968/01] Funding Source: researchfish

向作者/读者索取更多资源

A new family of locally conservative cell-centred flux-continuous schemes is presented for solving the porous media general-tensor pressure equation. A general geometry-permeability tensor approximation is introduced that is piecewise constant over the subcells of the control volumes and ensures that the local discrete general tensor is elliptic. A family of control-volume distributed subcell flux-continuous schemes are defined in terms of the quadrature parametrization q (Multigrid Methods. Birkhauser: Basel, 1993; Proceedings of the 4th European Conference on the Mathematics of Oil Recovery, Norway, June 1994; Comput. Geosci. 1998; 2:259-290), where the local position of flux continuity defines the quadrature point and each particular scheme. The subcell tensor approximation ensures that a symmetric positive-definite (SPD) discretization matrix is obtained for the base member (q = 1) of the formulation. The physical-space schemes are shown to be non-symmetric for general quadrilateral cells. Conditions for discrete ellipticity of the non-symmetric schemes are derived with respect to the local symmetric part of the tensor. The relationship with the mixed finite element method is given for both the physical-space and subcell-space q-families of schemes. M-matrix monotonicity conditions for these schemes are summarized. A numerical convergence Study of the schemes shows that while the physical-space schemes are the most accurate, the subcell tensor approximation reduces solution errors when compared with earlier cell-wise constant tensor schemes and that subcell tensor approximation using the control-volume face geometry yields the best SPD scheme results. A particular quadrature point is found to improve numerical convergence of the subcell schemes for the cases tested. Copyright (C) 2007 John Wiley & Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据