4.6 Article

Bubble-enhanced smoothed finite element formulation: a variational multi-scale approach for volume-constrained problems in two-dimensional linear elasticity

出版社

WILEY
DOI: 10.1002/nme.4751

关键词

multi-scale; smoothed finite element; bubble function; edge-based smoothing

向作者/读者索取更多资源

This paper presents a bubble-enhanced smoothed finite element formulation for the analysis of volume-constrained problems in two-dimensional linear elasticity. The new formulation is derived based on the variational multi-scale approach in which unequal order displacement-pressure pairs are used for the mixed finite element approximation and hierarchical bubble function is selected for the fine-scale displacement approximation. An area-weighted averaging scheme is employed for the two-scale smoothed strain calculation under the framework of edge-based smoothed FEM. The smoothed fine-scale solution is shown to naturally contain the stress field jump of the smoothed coarse-scale solution across the boundary of edge-based smoothing domain and thus provides the possibility to stabilize the global solution for volume-constrained problems. A global monolithic solution strategy is employed, and the fine-scale solution is solved without the consideration of approximating the strong form of the fine-scale equation. Several numerical examples are analyzed to demonstrate the accuracy of the present formulation. Copyright (C) 2014 John Wiley & Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据