4.6 Article

Immersed smoothed finite element method for two dimensional fluid-structure interaction problems

期刊

出版社

WILEY-BLACKWELL
DOI: 10.1002/nme.4299

关键词

fluid-structure interaction; immersed boundary; smoothed finite element method; characteristic-based split

向作者/读者索取更多资源

A novel method called immersed smoothed FEM using three-node triangular element is proposed for two-dimensional fluidstructure interaction (FSI) problems with largely deformable nonlinear solids placed within incompressible viscous fluid. The fluid flows are solved using the semi-implicit characteristic-based split method. Smoothed FEMs are employed to calculate the transient responses of solids based on explicit time integration. The fictitious fluid with two assumptions is introduced to achieve the continuous form of the FSI conditions. The discrete formulations to calculate the FSI forces are obtained in terms of the characteristic-based split scheme, and the algorithm based on a set of fictitious fluid mesh is proposed for evaluating the FSI force exerted on the solid. The accuracy, stability, and convergence properties of immersed smoothed FEM are verified by numerical examples. Investigations on the mesh size ratio indicate that the stability is fairly independent of the wide range of the mesh size ratio. No additional volume correction is required to satisfy the incompressible constraints. Copyright (c) 2012 John Wiley & Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据