4.6 Article

Numerical modeling of Kelvin-Helmholtz instability using smoothed particle hydrodynamics

出版社

WILEY-BLACKWELL
DOI: 10.1002/nme.3149

关键词

smoothed particle hydrodynamics (SPH); shear flow; two-phase flow; interfacial flows; surface tension; Kelvin-Helmholtz instability (KHI)

资金

  1. European Commission Research Directorate General [231048 (PIRG03-GA-2008-231048)]

向作者/读者索取更多资源

This paper presents a Smoothed Particle Hydrodynamics (SPH) solution for the Kelvin-Helmholtz Instability (KHI) problem of an incompressible two-phase immiscible fluid in a stratified inviscid shear flow with interfacial tension. The time-dependent evolution of the two-fluid interface over a wide range of Richardson number (Ri) and for three different density ratios is numerically investigated. The simulation results are compared with analytical solutions in the linear regime. Having captured the physics behind KHI, the effects of gravity and surface tension on a two-dimensional shear layer are examined independently and together. It is shown that the growth rate of the KHI is mainly controlled by the value of the Ri number, not by the nature of the stabilizing forces. It was observed that the SPH method requires a Richardson number lower than unity (i.e. Ri congruent to 0.8) for the onset of KHI, and that the artificial viscosity plays a significant role in obtaining physically correct simulation results that are in agreement with analytical solutions. The numerical algorithm presented in this work can easily handle two-phase fluid flow with various density ratios. Copyright (C) 2011 John Wiley & Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据