4.6 Article

Multiscale method for characterization of porous microstructures and their impact on macroscopic effective permeability

期刊

出版社

WILEY
DOI: 10.1002/nme.3220

关键词

geometrical tortuosity; level set method; lattice Boltzmann; finite element method

资金

  1. U.S. Department of Energy [DE-FG02-08ER15980]

向作者/读者索取更多资源

Recent technology advancements on X-ray computed tomography (X-ray CT) offer a nondestructive approach to extract complex three-dimensional geometries with details as small as a few microns in size. This new technology opens the door to study the interplay between microscopic properties (e.g. porosity) and macroscopic fluid transport properties (e.g. permeability). To take full advantage of X-ray CT, we introduce a multiscale framework that relates macroscopic fluid transport behavior not only to porosity but also to other important microstructural attributes, such as occluded/connected porosity and geometrical tortuosity, which are extracted using new computational techniques from digital images of porous materials. In particular, we introduce level set methods, and concepts from graph theory, to determine the geometrical tortuosity and connected porosity, while using a lattice Boltzmann/finite element scheme to obtain homogenized effective permeability at specimen-scale. We showcase the applicability and efficiency of this multiscale framework by two examples, one using a synthetic array and another using a sample of natural sandstone with complex pore structure. Copyright (C) 2011 John Wiley & Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据