4.6 Article

Filters in topology optimization based on Helmholtz-type differential equations

出版社

WILEY
DOI: 10.1002/nme.3072

关键词

topology optimization; density filters; sensitivity filters; parallel computing

资金

  1. Danish Center of Scientific Computing (DCSC)
  2. Danish Minister of Research
  3. Eurohorcs/ESF

向作者/读者索取更多资源

The aim of this paper is to apply a Helmholtz-type partial differential equation as an alternative to standard density filtering in topology optimization problems. Previously, this approach has been successfully applied as a sensitivity filter. The usual filtering techniques in topology optimization require information about the neighbor cells, which is difficult to obtain for fine meshes or complex domains and geometries. The complexity of the problem increases further in parallel computing, when the design domain is decomposed into multiple non-overlapping partitions. Obtaining information from the neighbor subdomains is an expensive operation. The proposed filter technique requires only mesh information necessary for the finite element discretization of the problem. The main idea is to define the filtered variable implicitly as a solution of a Helmholtz-type differential equation with homogeneous Neumann boundary conditions. The properties of the filter are demonstrated for various 2D and 3D topology optimization problems in linear elasticity, solved on serial and parallel computers. Copyright (C) 2010 John Wiley & Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据