4.6 Article

Upper and lower bounds for natural frequencies: A property of the smoothed finite element methods

出版社

JOHN WILEY & SONS LTD
DOI: 10.1002/nme.2889

关键词

numerical method; meshfree method; solution bounds; smoothed finite element method; softening effect natural frequency; eigenvalue; finite element method; computational methods

资金

  1. A*Star, Singapore SERC [052 101 0048]
  2. State Key Laboratory of Advanced Technology of Design and Manufacturing for Vehicle Body, Hunan University, People's Republic of China [40915001]

向作者/读者索取更多资源

Node-based smoothed finite element method (NS-FEM) using triangular type of elements has been found capable to produce upper bound solutions (to the exact solutions) for force driving static solid mechanics problems due to its monotonic 'soft' behavior. This paper aims to formulate an NS-FEM for lower bounds of the natural frequencies for free vibration problems. To make the NS-FEM temporally stable, an alpha-FEM is devised by combining the compatible and smoothed strain fields in a partition of unity fashion controlled by alpha is an element of [0, 1], so that both the properties of stiff FEM and the monotonically soft NS-FEM models can be properly combined for a desired purpose. For temporally stabilizing NS-FEM, alpha is chosen small so that it acts like a 'regularization parameter' making the NS-FEM stable, but still with sufficient softness ensuring lower bounds for natural frequency solution. Our numerical studies demonstrate that (1) using a proper alpha, the spurious non-zero energy modes can be removed and the NS-FEM becomes temporally stable; (2) the stabilized NS-FEM becomes a general approach for solids to obtain lower bounds to the exact natural frequencies over the whole spectrum; (3) alpha-FEM can even be tuned for obtaining nearly exact natural frequencies. Copyright (C) 2010 John Wiley & Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据