4.6 Article

An extended finite element/level set method to study surface effects on the mechanical behavior and properties of nanomaterials

期刊

出版社

WILEY-BLACKWELL
DOI: 10.1002/nme.2946

关键词

surface elasticity; surface stress; nano-structure; XFEM; level set

资金

  1. NSF [CMMI-0900607, CMMI-0750395]
  2. Div Of Civil, Mechanical, & Manufact Inn
  3. Directorate For Engineering [0900607] Funding Source: National Science Foundation

向作者/读者索取更多资源

We present a new approach based on coupling the extended finite element method (XFEM) and level sets to study surface and interface effects on the mechanical behavior of nanostructures. The coupled XFEM-level set approach enables a continuum solution to nanomechanical boundary value problems in which discontinuities in both strain and displacement due to surfaces and interfaces are easily handled, while simultaneously accounting for critical nanoscale surface effects, including surface energy, stress, elasticity and interface decohesion. We validate the proposed approach by studying the surface-stress-driven relaxation of homogeneous and bi-layer nanoplates as well as the contribution from the surface elasticity to the effective stiffness of nanobeams. For each case, we compare the numerical results with new analytical solutions that we have derived for these simple problems; for the problem involving the surface-stress-driven relaxation of a homogeneous nanoplate, we further validate the proposed approach by comparing the results with those obtained from both fully atomistic simulations and previous multiscale calculations based upon the surface Cauchy-Born model. These numerical results show that the proposed method can be used to gain critical insights into how surface effects impact the mechanical behavior and properties of homogeneous and composite nanobeams under generalized mechanical deformation. Copyright (C) 2010 John Wiley & Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据