4.6 Article

Topology optimization for stationary fluid-structure interaction problems using a new monolithic formulation

出版社

WILEY
DOI: 10.1002/nme.2777

关键词

fluid-structure interaction; monolithic approach; topology optimization

资金

  1. Korea Research Foundation [KRF-2008-331-D00013]
  2. National Research Foundation of Korea [2008-331-D00013] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

This paper on a new procedure for topology optimization in the steady-state fluid-structure interaction (FSI) problem. A review of current topology optimization methods highlights the difficulties in alternating between the two distinct sets of governing equations for fluid and structure dynamics (hereafter, the fluid and structural equations, respectively) and in imposing coupling boundary conditions between the separated fluid and solid domains. To overcome these difficulties, we propose an alternative monolithic procedure employing a unified domain rather than separated domains, which is not computationally efficient, lit the proposed analysis procedure, the spatial differential operator of the fluid and structural equations for a deformed configuration is transformed into that for an undeformed configuration with the help of the deformation gradient tensor. For the coupling boundary conditions, the divergence of the pressure and the Darcy damping force are inserted into the solid and fluid equations, respectively. The proposed method is validated in several benchmark analysis problems. Topology optimization in the FSI problem is then made possible by interpolating Young's modulus, the fluid pressure of the modified solid equation, and the inverse permeability from the damping force with respect to the design variables. Copyright (C) 2009 John Wiley & Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据