4.4 Article

Orthotropic active strain models for the numerical simulation of cardiac biomechanics

出版社

WILEY
DOI: 10.1002/cnm.2473

关键词

cardiac mechanics; active strain formulation; finite element discretization; nonlinear incompressible elasticity

资金

  1. IST-EPFL Joint Doctoral Initiative
  2. European Research Council [ERC-2008-AdG 227058]

向作者/读者索取更多资源

A model for the active deformation of cardiac tissue considering orthotropic constitutive laws is introduced and studied. In particular, the passive mechanical properties of the myocardium are described by the Holzapfel-Ogden relation, whereas the activation model is based on the concept of active strain. There, an incompatible intermediate configuration is considered, which entails a multiplicative decomposition between active and passive deformation gradients. The underlying EulerLagrange equations for minimizing the total energy are written in terms of these deformation factors, where the active part is assumed to depend, at the cell level, on the electrodynamics and on the specific orientation of the cardiomyocytes. The active strain formulation is compared with the classical active stress model from both numerical and modeling perspectives. The well-posedness of the linear system derived from a generic Newton iteration of the original problem is analyzed, and different mechanical activation functions are considered. TaylorHood and MINI finite elements are used in the discretization of the overall mechanical problem. The results of several numerical experiments show that the proposed formulation is mathematically consistent and is able to represent the main features of the phenomenon, while allowing savings in computational costs. Copyright (c) 2012 John Wiley & Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据