4.6 Article

Thermal recovery from a fractured medium in local thermal non-equilibrium

出版社

WILEY-BLACKWELL
DOI: 10.1002/nag.2145

关键词

enhanced geothermal system; hot dry rock; coupled problems; thermal stress; local thermal non-equilibrium

资金

  1. French Ministry of Higher Education
  2. Association Francaise des Femmes Diplomees des Universites (AFFDU)
  3. Institut National Polytechnique de Grenoble

向作者/读者索取更多资源

Thermal recovery from a hot dry rock (HDR) reservoir viewed as a deformable fractured medium is investigated with a focus on the assumption of local thermal non-equilibrium (LTNE). Hydraulic diffusion, thermal diffusion, forced convection and deformation are considered in a two-phase framework, the solid phase being made by impermeable solid blocks separated by saturated fractures. The finite element approximation of the constitutive and field equations is formulated and applied to obtain the response of a generic HDR reservoir to circulation tests. A change of time profile of the outlet fluid temperature is observed as the fracture spacing increases, switching from a single-step pattern to a double-step pattern, a feature which is viewed as characteristic of established LTNE. A dimensionless number is proposed to delineate between local thermal equilibrium (LTE) and non-equilibrium. This number embodies local physical properties of the mixture, elements of the geometry of the reservoir and the production flow rate. All the above properties being fixed, the resulting fracture spacing threshold between LTNE and LTE is found to decrease with increasing porosity or fluid velocity. The thermally induced effective stress is tensile near the injection well, illustrating the thermal contraction of the rock, while the pressure contribution of the fracture fluid is negligible during the late period. Copyright (c) 2012 John Wiley & Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据