4.6 Article

Experimental analysis of kaolinite particle orientation during triaxial path

出版社

WILEY
DOI: 10.1002/nag.936

关键词

consolidation; anisotropy; microfabric; microscopy; clay behaviour; triaxial tests

向作者/读者索取更多资源

The goal of this study was to analyze the relation between the behaviour of a clayey material at the macroscopic scale and its microfabric evolution. This may lead to a better understanding of macroscopic strain mechanisms especially the contractancy and dilatancy phenomena. The approach proposed in this paper is based on the study of clay particles orientation by SEM picture analysis after different phases of triaxial loading. In the initial state of the samples (one-dimensional compression), the SEM observations highlight a microstructural anisotropy with a preferential orientation of the particles normal to the loading direction. During isotropic loading, densification of the clayey matrix occurs related to a random orientation of particles indicated by the term 'depolarization'. In the earlier stages of constant sigma(3) drained triaxial path on slightly overconsolidated specimens, the microstructural depolarization seems to persist inside a macroscopic domain, in which only the volumetric strains due to the isotropic part of the stress tensor evolve. Then, a rotation mechanism of the particles towards preferred directions seems to be activated. The phenomenon appears directly linked to the evolution of the deviatoric part of the stress tensor. Copyright (C) 2010 John Wiley & Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据