4.6 Article

Mechanics of land subsidence due to groundwater pumping

出版社

WILEY
DOI: 10.1002/nag.863

关键词

land subsidence; groundwater; couple stresses; stress states; displacement

向作者/读者索取更多资源

This paper presents the formulation of the basic mechanics governing the changes in stress states from groundwater pumping and comparisons among predicted land subsidence from this mechanics with existing analyses and field data. Land subsidence is a growing, global problem caused by petroleum and groundwater withdrawal, mining operations, natural settlement, hydro-compaction, settlement of collapsible soils, settlement of organic soils and sinkholes. This paper is concerned with the land subsidence due to groundwater level decline by groundwater pumping. It is shown that the stress state consists of asymmetric stresses that are best simulated by a Cosserat rather than a Cauchy continuum. Land subsidence from groundwater level decline consists of vertical compression (consolidation), shear displacement and macro-rotation. The latter occurs when conditions are favorable (e.g. at a vertical interface) for the micro-rotation imposed by asymmetric stresses to become macro-rotation. When the length of the cone of depression is beyond root 2 times the thickness of the aquifer, simple shear on vertical planes with rotation is the predominant deformation mode. Otherwise, simple shear on horizontal planes is present. The predicted subsidence using the mechanics developed in this paper compares well with data from satellite-borne interferometric synthetic aperture radar. Copyright (C) 2009 John Wiley & Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据