4.6 Article

Slit-scanning differential x-ray phase-contrast mammography: Proof-of-concept experimental studies

期刊

MEDICAL PHYSICS
卷 42, 期 4, 页码 1959-1965

出版社

WILEY
DOI: 10.1118/1.4914420

关键词

differential phase-contrast imaging; grating interferometry; full-field digital mammography

向作者/读者索取更多资源

Purpose: The purpose of this work is to investigate the feasibility of grating-based, differential phase-contrast, full-field digital mammography (FFDM) in terms of the requirements for field-of-view (FOV), mechanical stability, and scan time. Methods: A rigid, actuator-free Talbot interferometric unit was designed and integrated into a state-of-the-art x-ray slit-scanning mammography system, namely, the Philips MicroDose L30 FFDM system. A dedicated phase-acquisition and phase retrieval method was developed and implemented that exploits the redundancy of the data acquisition inherent to the slit-scanning approach to image generation of the system. No modifications to the scan arm motion control were implemented. Results: The authors achieve a FOV of 160x196 mm consisting of two disjoint areas measuring 77x196 mm with a gap of 6 mm between them. Typical scanning times vary between 10 and 15 s and dose levels are lower than typical FFDM doses for conventional scans with identical acquisition parameters due to the presence of the source-grating G(0). Only minor to moderate artifacts are observed in the three reconstructed images, indicating that mechanical vibrations induced by other system components do not prevent the use of the platform for phase contrast imaging. Conclusions: To the best of our knowledge, this is the first attempt to integrate x-ray gratings hardware into a clinical mammography unit. The results demonstrate that a scanning differential phase contrast FFDM system that meets the requirements of FOV, stability, scan time, and dose can be build. (C) 2015 American Association of Physicists in Medicine.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据