4.6 Article

Knowledge-based prediction of three-dimensional dose distributions for external beam radiotherapy

期刊

MEDICAL PHYSICS
卷 43, 期 1, 页码 378-387

出版社

WILEY
DOI: 10.1118/1.4938583

关键词

knowledge based planning; treatment planning; external beam radiotherapy; dose prediction

向作者/读者索取更多资源

Purpose: To demonstrate knowledge-based 3D dose prediction for external beam radiotherapy. Methods: Using previously treated plans as training data, an artificial neural network (ANN) was trained to predict a dose matrix based on patient-specific geometric and planning parameters, such as the closest distance (r) to planning target volume (PTV) and organ-at-risks (OARs). Twenty-three prostate and 43 stereotactic radiosurgery/radiotherapy (SRS/SRT) cases with at least one nearby OAR were studied. All were planned with volumetric-modulated arc therapy to prescription doses of 81 Gy for prostate and 12-30 Gy for SRS. Using these clinically approved plans, ANNs were trained to predict dose matrix and the predictive accuracy was evaluated using the dose difference between the clinical plan and prediction, delta D = D-clin-D-pred. The mean (), standard deviation (sigma(delta Dr)), and their interquartile range (IQR) for the training plans were evaluated at a 2-3 mm interval from the PTV boundary (r(PTV)) to assess prediction bias and precision. Initially, unfiltered models which were trained using all plans in the cohorts were created for each treatment site. The models predict approximately the average quality of OAR sparing. Emphasizing a subset of plans that exhibited superior to the average OAR sparing during training, refined models were created to predict high-quality rectum sparing for prostate and brainstem sparing for SRS. Using the refined model, potentially suboptimal plans were identified where the model predicted further sparing of the OARs was achievable. Replans were performed to test if the OAR sparing could be improved as predicted by the model. Results: The refined models demonstrated highly accurate dose distribution prediction. For prostate cases, the average prediction bias for all voxels irrespective of organ delineation ranged from -1% to 0% with maximum IQR of 3% over r(PTV) is an element of [-6,30] mm. The average prediction error was less than 10% for the same rPTV range. For SRS cases, the average prediction bias ranged from -0.7% to 1.5% with maximum IQR of 5% over r(PTV) is an element of [-4,32] mm. The average prediction error was less than 8%. Four potentially suboptimal plans were identified for each site and subsequent replanning demonstrated improved sparing of rectum and brainstem. Conclusions: The study demonstrates highly accurate knowledge-based 3D dose predictions for radiotherapy plans. (C) 2016 American Association of Physicists in Medicine.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据