4.7 Article

Maitake beta-glucan enhances granulopoiesis and mobilization of granulocytes by increasing G-CSF production and modulating CXCR4/SDF-1 expression

期刊

INTERNATIONAL IMMUNOPHARMACOLOGY
卷 9, 期 10, 页码 1189-1196

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.intimp.2009.06.007

关键词

Beta-glucan; G-CSF; Granulocyte; CXCR4; SDF-1

向作者/读者索取更多资源

Previous studies have presented that Maitake beta-glucan (MD-Fraction) extracted from the fruit body of Grifola frondosa has an anti-tumor effect by activating the immune system. Recently, the stimulating effects of beta-glucans on hematopoiesis were identified as new characteristics of polysaccharides, possibly helping to relieve the immunosuppression which results from chemotherapies. We demonstrated that the production of granulocyte colony-stimulating factor (G-CSF) was significantly enhanced by MD-Fraction (8 mg/kg, i.p.) in granulocytopenic model induced in mice using cyclophosphamide (200 mg/kg, i.p.). In addition, MD-Fraction induced a biphasic increase in the number of granulocytes in the spleen. The mechanism for the increase in granulocytes on the early phase on day 1 might involve the increased mRNA expression of macrophage inflammatory protein-2 (MIP-2), in the splenic cells, thereby recruiting granulocytes into the spleen. Interestingly, a decline of myeloid progenitors in the bone marrow and an increase in granulocytes in the peripheral blood were observed on day 5, suggesting a mobilization of granulocytes and their progenitors from the bone marrow to the peripheral blood. We confirmed that a possible mechanism in which MD-Fraction promoted the mobilization of granulocytes and their progenitors from the bone marrow is down-regulating the expression of the chemokine receptor, CXCR4, and its ligand, stromal cell-derived factor 1 (SDF-1) in the bone marrow microenvironment. These results reveal a novel function of Maitake beta-glucan that enhances the granulopoiesis and mobilization of granulocytes and their progenitors by stimulating G-CSF production. This finding presents opportunities to develop new therapeutic strategies against the immunosuppression caused by chemotherapies in cancer patients. (C) 2009 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据