4.4 Article Proceedings Paper

Dietary krill oil increases docosahexaenoic acid and reduces 2-arachidonoylglycerol but not N-acylethanolamine levels in the brain of obese Zucker rats

期刊

INTERNATIONAL DAIRY JOURNAL
卷 20, 期 4, 页码 231-235

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.idairyj.2009.11.015

关键词

-

资金

  1. Aker Biomarine ASA, Oslo, Norway

向作者/读者索取更多资源

Evidence suggests that dietary long chain polyunsaturated fatty acids (LCPUFAs), and particularly those belonging to the n-3 family, may influence the brain fatty acid profile and, thereby, the biosynthesis of endocannabinoids in rodents. However, the doses used are usually quite high and not comparable with human intake. Recently, we have shown that relatively low doses of dietary n-3 LCPUFAs (4 weeks), in the form of either fish or krill oil, balanced for EPA and DHA content, and against a control diet with no EPA and DHA and similar contents of oleic, linoleic and alpha-linolenic acids, lower the concentrations of the endocannabinoids, anandamide (AEA) and 2-arachidonoylglycerol (2-AG), in the visceral adipose tissue, and of AEA in the liver and heart, of obese Zucker rats. This, in turn, is associated with lower levels of arachidonic acid in membrane phospholipids and with amelioration of some metabolic syndrome parameters. We investigated here whether in Zucker rats, under the same conditions, fish and krill oil are also able to influence LCPUFA and endocannabinoid profiles in brain. Only krill oil was able to increase significantly DNA levels in brain phospholipids, with no changes in arachidonic acid. DHA increase was associated with lower levels of 2-AG in the brain, whereas AEA and its congeners, N-palmitoylethanolamine and N-oleoylethanolamine, were unchanged. We conclude that, despite the strong impact of dietary n-3 fatty acid on endocannabinoid levels previously observed in peripheral tissues, in the brain only 2-AG is affected by dietary krill oil, suggesting that the beneficial effect of the latter on the metabolic syndrome is mostly exerted by modifying peripheral endocannabinoids. Nevertheless, possible effects of dietary krill oil in the brain through modification of 2-AG levels deserve further investigation. (C) 2009 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据