4.7 Article

Numerical study of an exhaust heat recovery system using corrugated tube heat exchanger with twisted tape inserts

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.icheatmasstransfer.2014.07.002

关键词

Corrugated tube; Twisted tapes; Exhaust gas; Heavy diesel generator; Waste heat recovery; Concentric tube heat exchanger

资金

  1. Alaska Center for Energy and Power, Mechanical Engineering Department, College of Engineering and Mines at University of Alaska Fairbanks

向作者/读者索取更多资源

The purpose of this work is to investigate gas to liquid heat transfer performance of concentric tube heat exchanger with twisted tape inserted corrugated tube and to evaluate its impact on engine performance and economics through heat recovery from the exhaust of a heavy duty diesel generator (120 ekW rated load). This type of heat exchanger is expected to be inexpensive to install and effective in heat transfer and to have minimal effect on exhaust emissions of diesel engines. This type of heat exchanger has been investigated for liquid to liquid heat transfer at low Reynolds number by few investigators, but not for gas to liquid heat transfer. In this paper, a detail of heat transfer performance is investigated through simulations using computer software. The software is first justified by comparing the simulation results with the developed renowned correlations. Simulations are then conducted for concentric tube heat exchanger with different twisted tape configuration for optimal design. The results show that the enhancement in the rate of heat transfer in annularly corrugated tube heat exchanger with twisted tape is about 235.3% and 67.26% when compared with the plain tube and annularly corrugated tube heat exchangers without twisted tapes respectively. Based on optimal results, for a 120 ekW diesel generator, the application of corrugated tube with twisted tape concentric tube heat exchanger can save 2250 gal of fuel, $11,330 of fuel cost annually and expected payback of 1 month. In addition, saving in heating fuel also reduces in CO2 emission by 23 metric tons a year. (C) 2014 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据