4.7 Article

Investigation effect of nanoparticle mean diameter on mixed convection Al2O3-water nanofluid flow in an annulus by two phase mixture model

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.icheatmasstransfer.2013.08.017

关键词

Horizontal annulus; Two phase; Mixture model; Nanoparticle mean diameter

资金

  1. talented office of Semnan University

向作者/读者索取更多资源

In this paper, laminar mixed convection of nanofluid (Al2O3-water) in horizontal concentric annulus with constant heat flux boundary condition has been studied. Two thermal boundary conditions were investigated, one in which a uniform heat flux at the inner wall and an adiabatic at the other wall, and the other inner and outer walls were heated in a same heat flux. Two phase mixture model employed to investigate effect of mean diameter of nanoparticle on the hydrodynamics and thermal characteristic. The fluid flow properties are assumed constant except for the density in the body force, which varies linearly with the temperature (Boussinesq's hypothesis), thus the fluid flow characteristics are affected by the buoyancy force. Three dimensional elliptical governing equations have been discretized using the finite volume approach (FVM) using SIMPELC algorithm to investigate fluid flow throughout of an annulus duct. Numerical simulations have been carried out for the nanoparticle volume fraction (phi = 0.02) and various mean diameters of nanoparticles (d(p)) between 13 and 72 nm and different values of the Grashof and Reynolds numbers. The calculated results demonstrate that Nusselt number decreases with increasing nanoparticle mean diameter while it does not influence significantly the hydrodynamic parameters. Also this results show that nanoparticle distribution at the annuluses cross section is non-uniformity. (C) 2013 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据