4.7 Article

Free convection heat transfer in complex-wavy-wall enclosed cavity filled with nanofluid

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.icheatmasstransfer.2013.02.015

关键词

SPH method; Free convection; Rayleigh number; Nusselt number; Wavy-wall cavity

向作者/读者索取更多资源

A numerical investigation is performed into the natural convection heat transfer characteristics within an enclosed cavity filled with nanofluid. The left and right walls of the cavity have a complex-wavy geometry and are maintained at a low and high temperature, respectively. Meanwhile, the upper and lower walls of the cavity are both flat and insulated. The nanofluid is composed of Al2O3 nanoparticles suspended in pure water. In performing the analysis, the governing equations are formulated using the Smoothed Particle Hydrodynamics and the complex-wavy-surface is modeled as the superimposition of two sinusoidal functions. The simulations examine the effects of the volume fraction of nanoparticles, the Rayleigh number and the complex-wavy-surface geometry parameters on the flow streamlines, isotherm distribution and Nusselt number within the cavity. The results show that for all values of the Rayleigh number, the Nusselt number, increases as the volume fraction of nanoparticles increases. In addition, it is shown that the heat transfer performance can be optimized by tuning the wavy-surface geometry parameters in accordance with the Rayleigh number. Overall, the results presented in this study provide a useful insight into potential strategies for enhancing the convection heat transfer performance within enclosed cavities with complex-wavy-wall surfaces. (c) 2013 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据