4.2 Article

Estimation of soil water evaporative loss after tillage operation using the stable isotope technique

期刊

INTERNATIONAL AGROPHYSICS
卷 27, 期 3, 页码 257-264

出版社

POLISH ACAD SCIENCES, INST AGROPHYSICS
DOI: 10.2478/v10247-012-0093-8

关键词

evaporative loss; tillage; isotopic fractionation; isotope technique

类别

向作者/读者索取更多资源

Application of stable isotopes in soil studies has improved quantitative evaluation of evaporation and other hydrological processes in soil. This study was carried out to determine the effect of tillage on evaporative loss of water from the soil. Zero tillage and conventional tillage were compared. Suction tubes were installed for soil water collection at the depths 0.15, 0.50, and 1.0 m by pumping soil water with a peristaltic pump. Soil water evaporation was estimated using stable isotopes of water. The mean isotopic composition of the soil water at 0.15 m soil depth were -1.15 parts per thousand (delta O-18) and -0.75 parts per thousand (delta D) and were highly enriched compared with the isotopic compositions of the site precipitation. Soil water stable isotopes (delta O-18 and delta D) were more enriched near the surface under zero tillage while they were less negative down the profile under zero tillage. This suggests an occurrence of more evaporation and infiltration under conventional then zero tillage, respectively, because evaporative fractionation contributes to escape of lighter isotopes from liquid into the vapour phase leading to enrichment in heavy isotopes in the liquid phase. The annual evaporation estimated using the vapour diffusion equation ranges from 46-70 and 54-84 mm year(-1) under zero and conventional tillage, respectively, indicating more evaporation under conventional tillage compared with zero tillage. Therefore, to reduce soil water loss, adoption of conservation tillage practices such as zero tillage is encouraged.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据