4.4 Article

Effect of Flexural and Torsional Wing Flexibility on Lift Generation in Hoverfly Flight

期刊

INTEGRATIVE AND COMPARATIVE BIOLOGY
卷 51, 期 1, 页码 142-150

出版社

OXFORD UNIV PRESS INC
DOI: 10.1093/icb/icr051

关键词

-

类别

资金

  1. National Science Foundation [CCF-0926148]
  2. Air Force Office of Scientific Research [FA9550-09-1-0156]
  3. Wyss Institute for Biologically Inspired Engineering

向作者/读者索取更多资源

The effect of wing flexibility in hoverflies was investigated using an at-scale mechanical model. Unlike dynamically-scaled models, an at-scale model can include all phenomena related to motion and deformation of the wing during flapping. For this purpose, an at-scale polymer wing mimicking a hoverfly was fabricated using a custom micromolding process. The wing has venation and corrugation profiles which mimic those of a hoverfly wing and the measured flexural stiffness of the artificial wing is comparable to that of the natural wing. To emulate the torsional flexibility at the wing-body joint, a discrete flexure hinge was created. A range of flexure stiffnesses was chosen to match the torsional stiffness of pronation and supination in a hoverfly wing. The polymer wing was compared with a rigid, flat, carbon-fiber wing using a flapping mechanism driven by a piezoelectric actuator. Both wings exhibited passive rotation around the wing hinge; however, these rotations were reduced in the case of the compliant polymer wing due to chordwise deformations during flapping which caused a reduced effective angle of attack. Maximum lift was achieved when the stiffness of the hinge was similar to that of a hoverfly in both wing cases and the magnitude of measured lift is sufficient for hovering; the maximum lift achieved by the single polymer and carbon-fiber wings was 5.9 x 10(2) mu N and 6.9 x 10(2) mu N, respectively. These results suggest that hoverflies could exploit intrinsic compliances to generate desired motions of the wing and that, for the same flapping motions, a rigid wing could be more suitable for producing large lift.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据