4.6 Article

Disruption of redox homeostasis leads to oxidative DNA damage in spermatocytes of Wolbachia-infected Drosophila simulans

期刊

INSECT MOLECULAR BIOLOGY
卷 21, 期 5, 页码 510-520

出版社

WILEY
DOI: 10.1111/j.1365-2583.2012.01155.x

关键词

Wolbachia; Drosophila; cytoplasmic incompatibility; oxidative stress; DNA damage; antioxidant

向作者/读者索取更多资源

Molecular interactions between symbiotic bacteria and their animal hosts are, as yet, poorly understood. The most widespread bacterial endosymbiont, Wolbachia pipientis, occurs in high density in testes of infected Drosophila simulans and causes cytoplasmic incompatibility (CI), a form of male-derived zygotic lethality. Wolbachia grow and divide within host vacuoles that generate reactive oxygen species (ROS), which in turn stimulate the up-regulation of antioxidant enzymes. These enzymes appear to protect the host from ROS-mediated damage, as there is no obvious fitness cost to Drosophila carrying Wolbachia infections. We have now determined that DNA from Wolbachia-infected mosquito Aedes albopictus (Aa23) cells shows a higher amount of the base 8-oxo-deoxyguanosine, a marker of oxidative DNA damage, than DNA from uninfected cells, and that Wolbachia infection in D. simulans is associated with an increase in DNA strand breaks in meiotic spermatocytes. Feeding exogenous antioxidants to male and female D. simulans dramatically increased Wolbachia numbers with no obvious effects on host fitness. These results suggest that ROS-induced DNA damage in sperm nuclei may contribute to the modification characteristic of CI expression in Wolbachia-infected males and that Wolbachia density is sensitive to redox balance in these flies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据