4.6 Article

Silencing of sucrose hydrolase causes nymph mortality and disturbs adult osmotic homeostasis in Diaphorina citri (Hemiptera: Liviidae)

期刊

INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY
卷 101, 期 -, 页码 131-143

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ibmb.2018.09.003

关键词

RNA interference; Sucrose hydrolase; Osmoregulation; Diaphorina dui; GC-MS

资金

  1. SCRI, NIFA-USDA [201500955-04]

向作者/读者索取更多资源

Plant piercing sucking insects mainly feed on phloem sap containing a high amount of sucrose. To enhance the absorption of sucrose from the midgut, sucrose hydrolase digests sucrose into glucose and fructose. In this study, a sucrose hydrolase homolog (DcSuh) was identified and targeted in Diaphorina citri, the vector of huanglongbing (HLB), by RNA interference (RNAi). In silico analysis revealed the presence of an Aamy domain in the DcSUH protein, which is characteristic of the glycoside hydrolase family 13 (GH13). Phylogenetic analysis showed DcSuh was closely related to the sucrose hydrolase of other Hemiptera members. The highest gene expression levels of DcSuh was found in the 4th and 5th instar nymphs. dsRNA-mediated RNAi of DcSuh was achieved through topical feeding. Our results showed that application of 0.2 mu L of 500 ng mu L-1 (100 ng) dsRNA-DcSuh was sufficient to repress the expression of the targeted gene and cause nymph mortality and reduce adult lifespan. The reduction in gene expression, mortality, and lifespan was dose-dependent. In agreement with the gene expression results, treatment with dsRNA-DcSuh significantly reduced sucrose hydrolase activity in treated nymphs and emerged adults from treated nymphs. Interestingly, some emerged adults from treated nymphs showed a swollen abdomen phenotype, indicating that these insects were under osmotic stress. Although the percentage of swollen abdomens was low, their incidence was significantly correlated with the concentration of applied dsRNA-DcSuh. Metabolomic analyses using GC-MS showed an accumulation of sucrose and a reduction in fructose, glucose and trehalose in treated nymphs, confirming the inhibition of sucrose hydrolase activity. Additionally, most of the secondary metabolites were reduced in the treated nymphs, indicating a reduction in the biological activities in D. citri and that they are under stress. Our findings indicate that sucrose hydrolase might be a potential target for effective RNAi control of D. cirri.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据