4.6 Article

The orthologue to the Cpm1/Cqm1 receptor in Aedes aegypti is expressed as a midgut GPI-anchored α-glucosidase, which does not bind to the insecticidal binary toxin

期刊

INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY
卷 40, 期 8, 页码 604-610

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ibmb.2010.05.007

关键词

Bin toxin; Bacillus sphaericus; Biolarvicides; Receptor; Toxin binding; Glycosylation

资金

  1. Conselho Nacional de Pesquisa (CNPq Brazil) [471911/2006-2]
  2. Fundacao de Amparo a Ciencia e Tecnologia do Estado de Pernambuco (FACEPE Brazil) [APQ 0427-2.13/08]

向作者/读者索取更多资源

Aedes aegypti larvae are refractory to the insecticidal binary (Bin) toxin from Bacillus sphaericus, which is not able to bind to its target tissue in the larval midgut. In contrast, Culex pipiens larvae are highly susceptible to that toxin, which targets its midgut brush border membranes (BBMF) through the binding of the BinB subunit to specific receptors, the Cpm1/Cqm1 membrane-bound alpha-glucosidases. The identification of an Ae. aegypti gene encoding a Cpm1/Cqm1 orthologue, here named Aam1, led to the major goal of this study which was to investigate its expression. The aam1 transcript was found in larvae and adults from Ae. aegypti and a approximate to 73-kDa protein was recognized by an anti-Cqm1 antibody in midgut BBMF. The Aam1 protein displayed a-glucosidase activity and localized to the midgut epithelium, bound through a GPI anchor, similarly to Cpm1/Cqm1. However, no binding of native Aam1 was observed to the recombinant BinB subunit. Treatment of both proteins with endoglycosidase led to changes in the molecular weight of Aam1, but not Cqm1, implying that the former was glycosylated. The findings from this work rule out lack of receptors in larval stages, or its expression as soluble proteins, as a reason for Ae. aegypti refractoriness to Bin toxin. (C) 2010 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据