4.7 Article

Quantitative comparison of multiframe data association techniques for particle tracking in time-lapse fluorescence microscopy

期刊

MEDICAL IMAGE ANALYSIS
卷 24, 期 1, 页码 163-189

出版社

ELSEVIER
DOI: 10.1016/j.media.2015.06.006

关键词

Object tracking; Correspondence problem; Multiframe data association; Lagrangian relaxation; Fluorescence microscopy

资金

  1. Dutch Technology Foundation (STW) [10443]
  2. Netherlands Organization for Scientific Research (NWO-Veni) [639.021.128]

向作者/读者索取更多资源

Biological studies of intracellular dynamic processes commonly require motion analysis of large numbers of particles in live-cell time-lapse fluorescence microscopy imaging data. Many particle tracking methods have been developed in the past years as a first step toward fully automating this task and enabling high-throughput data processing. Two crucial aspects of any particle tracking method are the detection of relevant particles in the image frames and their linking or association from frame to frame to reconstruct the trajectories. The performance of detection techniques as well as specific combinations of detection and linking techniques for particle tracking have been extensively evaluated in recent studies. Comprehensive evaluations of linking techniques per se, on the other hand, are lacking in the literature. Here we present the results of a quantitative comparison of data association techniques for solving the linking problem in biological particle tracking applications. Nine multiframe and two more traditional two-frame techniques are evaluated as a function of the level of missing and spurious detections in various scenarios. The results indicate that linking techniques are generally more negatively affected by missing detections than by spurious detections. If misdetections can be avoided, there appears to be no need to use sophisticated multiframe linking techniques. However, in the practically likely case of imperfect detections, the latter are a safer choice. Our study provides users and developers with novel information to select the right linking technique for their applications, given a detection technique of known quality. (C) 2015 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据