4.7 Article

Electrocatalytic CO2 Reduction with Cis and Trans Conformers of a Rigid Dinuclear Rhenium Complex: Comparing the Monometallic and Cooperative Bimetallic Pathways

期刊

INORGANIC CHEMISTRY
卷 57, 期 15, 页码 9564-9575

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.inorgchem.8b01775

关键词

-

资金

  1. University of Mississippi
  2. National Science Foundation [OIA-1539035, CHE-1338056]
  3. Mississippi Center for Supercomputing Research

向作者/读者索取更多资源

Anthracene-bridged dinuclear rhenium complexes are reported for electrocatalytic carbon dioxide (CO2) reduction to carbon monoxide (CO). Related by hindered rotation of each rhenium active site to either side of the anthracene bridge, cis and trans conformers have been isolated and characterized. Electrochemical studies reveal distinct mechanisms, whereby the cis conformer operates via cooperative bimetallic CO2 activation and conversion and the trans conformer reduces CO2 through well-established single-site and bimolecular pathways analogous to Re(bpy)(CO)(3)Cl. Higher turnover frequencies are observed for the cis conformer (35.3 s(-1)) relative to the trans conformer (22.9 s(-1)), with both outperforming Re(bpy)(CO)(3)Cl (11.1 s(-1)). Notably, at low applied potentials, the cis conformer does not catalyze the reductive disproportionation of CO2 to CO and CO32- in contrast to the trans conformer and mononuclear catalyst, demonstrating that the orientation of active sites and structure of the dinuclear cis complex dictate an alternative catalytic pathway. Further, UV-vis spectroelectrochemical experiments demonstrate that the anthracene bridge prevents intramolecular formation of a deactivated Re-Re-bonded dimer. Indeed, the cis conformer also avoids intermolecular Re-Re bond formation

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据