4.7 Article

What Can Density Functional Theory Tell Us about Artificial Catalytic Water Splitting?

期刊

INORGANIC CHEMISTRY
卷 53, 期 13, 页码 6386-6397

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ic5002557

关键词

-

资金

  1. MIT MRSEC through the MRSEC Program of the National Science Foundation [DMR-0819762]
  2. ENI-MIT solar frontiers center
  3. NSF

向作者/读者索取更多资源

Water splitting by artificial catalysts is a critical process in the production of hydrogen gas as an alternative fuel. In this paper, we examine the essential role of theoretical calculations, with particular focus on density functional theory (DFT), in understanding the water-splitting reaction on these catalysts. First, we present an overview of DFT thermochemical calculations on water-splitting catalysts, addressing how these calculations are adapted to condensed phases and room temperature. We show how DFT-derived chemical descriptors of reactivity can be surprisingly good estimators for reactive trends in water-splitting catalysts. Using this concept, we recover trends for bulk catalysts using simple model complexes for at least the first-row transition-metal oxides. Then, using the CoPi cobalt oxide catalyst as a case study, we examine the usefulness of simulation for predicting the kinetics of water splitting. We demonstrate that the appropriate treatment of solvent effects is critical for computing accurate redox potentials with DFT, which, in turn, determine the rate-limiting steps and electrochemical overpotentials. Finally, we examine the ability of DFT to predict mechanism, using ruthenium complexes as a focal point for discussion. Our discussion is intended to provide an overview of the current strengths and weaknesses of the state-of-the-art DFT methodologies for condensed-phase molecular simulation involving transition metals and also to guide future experiments and computations toward the understanding and development of novel water-splitting catalysts.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据