4.7 Article

Excellent Selectivity for Actinides with a Tetradentate 2,9-Diamide-1,10-Phenanthroline Ligand in Highly Acidic Solution: A Hard-Soft Donor Combined Strategy

期刊

INORGANIC CHEMISTRY
卷 53, 期 3, 页码 1712-1720

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ic402784c

关键词

-

资金

  1. Major Research Plan Breeding and Transmutation of Nuclear Fuel in Advanced Nuclear Fission Energy System of the Natural Science Foundation of China [91326202, 91126006]
  2. National Natural Science Foundation of China [21201166, 11275219, 11105162, 21261140335]
  3. Strategic Priority Research Program of the Chinese Academy of Sciences [XDA030104]
  4. China Postdoctoral Science Foundation [2013M530734]

向作者/读者索取更多资源

In this work, we reported a phenanthroline-based tetradentate ligand with hard-soft donors combined in the same molecule, N,N'-diethyl-N,N'-ditolyl-2,9-diamide-1,10-phenanthroline (Et-Tol-DAPhen), for the group separation of actinides over lanthanides. The synthesis and solvent extraction as well as complexation behaviors of the ligand with actinides and lanthanides are studied experimentally and theoretically. The ligand exhibits excellent extraction ability and high selectivity toward hexavalent, tetravalent, and trivalent actinides over lanthanides in highly acidic solution. The chemical stoichiometry of Th(IV) and U(VI) complexes with Et-Tol-DAPhen is determined to be 1:1 using X-ray crystallography. The stability constants of some typical actinide and lanthanide complexes of Et-Tol-DAPhen are also determined in methanol by UV-vis spectrometry. Density functional theory (DFT) calculations reveal that the An-N bonds of the Et-Tol-DAPhen complexes have more covalent characters than the corresponding Eu-N bonds, which may in turn lead to the selectivity of Et-Tol-DAPhen toward actinides. This ligand possesses merits of both alkylamide and 219-bis-(5,6-dialkyl-1,2,4-triazin-3-yl)-1,10-phenanthroline (R-BTPhen) extractants for efficient actinide extraction and the selectivity toward minor actinides over lanthanides and hence renders huge potential opportunities in high-level liquid waste (HLLW) partitioning.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据