4.7 Article

Photosolvolysis of cis-[Ru(α-diimine)2(4-aminopyridine)2]2+ Complexes: Photophysical, Spectroscopic, and Density Functional Theory Analysis

期刊

INORGANIC CHEMISTRY
卷 53, 期 7, 页码 3694-3708

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ic5000205

关键词

-

资金

  1. Natural Sciences and Engineering Research Council (Ottawa)
  2. FAPESP [Proc. 2006/50322-0, 2008/52859-7, 2009/08218-0]

向作者/读者索取更多资源

The photochemical and photophysical properties of the cis-[Ru-II(alpha-diimine)(2)(4-APy)(2)](2+) complexes, where alpha-diimine = 1,10-phenanthroline (phen) and 4-APy = 4-aminopyridine I, 4,7-diphenyl-1,10-phenanthroline (Ph(2)phen) II, 2,2'-bipyridine (bpy) III, and 4,4'-dimethyl-2,2'-bipyridine (Me(2)bpy) IV, are reported. The four complexes were characterized using high-performance liquid chromatography, H-1 NMR, UV-visible, emission, and transient absorption spectroscopy. Upon photolysis in acetonitrile solution these complexes undergo 4-APy dissociation to give the monoacetonitrile complex (for II, III, and IV) or the bis(acetonitrile) complex (for I). A fairly wide range of excitation wavelengths (from 420 to 580 nm) were employed to explore the photophysics of these systems. Quantum yields and transient spectra are provided. Density functional theory (DFT) and time-dependent DFT analysis of singlet and triplet excited states facilitated our understanding of the photochemical behavior. A detailed assessment of the geometric and electronic structures of the lowest energy spin triplet charge transfer state ((MLCT)-M-3) and spin triplet metal centered state ((MC)-M-3) (d pi -> sigma* transitions) for species I-IV is presented. A second, previously unobserved, and nondissociative, (MC)-M-3 state is identified and is likely involved in the primary step of photodissociation. This new (MC)-M-3 state may indeed play a major role in many other photodissociation processes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据