4.7 Article

Interplay of Strongly Anisotropic Metal Ions in Magnetic Blocking of Complexes

期刊

INORGANIC CHEMISTRY
卷 52, 期 11, 页码 6328-6337

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ic302568x

关键词

-

资金

  1. European Union [NMP3-CT-2005-515767]
  2. ANR-PNANOproject MolNanoSpin [MolNanoSpin ANR-08-NANO-002]
  3. ERC [MolNanoSpin 226558]
  4. INPAC grant from KU Leuven
  5. Methusalem grant from KU Leuven

向作者/读者索取更多资源

The key characteristic of single molecule magnets (SMMs) is the anisotropy Induced blocking barrier, which should be as efficient as possible, i.e, to be able to provide long magnetic relaxation times at elevated temperatures. The strategy for the design of efficient SMMs on the basis of transition metal complexes such as Mn12Ac is well established, which is not the case of complexes involving strongly anisotropic metal ions such as cobalt(II) and lanthanides (Ln). While strong intraionic anisotropy in the latter allows them to block the magnetization already in mononuclear complexes, the presence of several such ions in a complex does not result automatically in more efficient SMMs. Here, the magnetic blocking in the series of isostructural. 3d-4f complexes Co-II-Gd-III-Co-II, Ln = Gd, Tb, and Dy, is analyzed using an originally developed ab initio based approach for the investigation of blocking barriers. The theoretical analysis allows one to explain the counterintuitive result that the Co-Gd-Co complex is a better SMM than terbium and dysprosium analogues. It turns out that the highly efficient magnetic blockage in the Co-Gd-Co complex results from a concomitant effect of unexpectedly large unquenched orbital momentum on Coll ions (ca. 11 mu B) and the large spin on the gadolinium (S = 7/2), which provides a multilevel blocking barrier, similar to the one of the classical Mn12Ac. We conclude that efficient SMMs could be obtained in complexes combining strongly anisotropic and isotropic metal ions with large angular momentum rather than in polynuclear compounds involving strongly anisotropic ions only.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据