4.7 Article

Mixed Ligand Cu2+ Complexes of a Model Therapeutic with Alzheimer's Amyloid-β Peptide and Monoamine Neurotransmitters

期刊

INORGANIC CHEMISTRY
卷 52, 期 8, 页码 4303-4318

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ic302289r

关键词

-

资金

  1. Future Fellowship
  2. National Health and Medical Research Council of Australia
  3. European Regional Development Fund
  4. Innovative Economy, The National Cohesion Strategy of Poland

向作者/读者索取更多资源

8-Hydroxyquinolines (8HQ) have found widespread application in chemistry and biology due to their ability to complex a range of transition metal ions. The family of 2-substituted 8HQs has been proposed for use in the treatment of Alzheimer's disease (AD). Most notably, the therapeutic PBT2 (Prana Biotechnology Ltd.) has been shown to act as an efficient metal chaperone, disaggregate metal-enriched amyloid plaques comprised of the A beta peptide, inhibit Cu/A beta redox chemistry, and reverse the AD phenotype in transgenic animal models. Yet surprisingly little is known about the molecular interactions at play. In this study, we show that the homologous ligand 2-[(dimethylamino)methyl]-8-hydroxyquinoline (HL) forms a CuL complex with a conditional (apparent) dissociation constant of 0.33 nM at pH 6.9 and is capable of forming ternary Cu2+ complexes with neurotransmitters including histamine (HA), glutamic acid (Glu), and glycine (Gly), with glutathione disulfide (GSSG), and with histidine (His) side chains of proteins and peptides including the A beta peptide. Our findings suggest a molecular basis for the strong metal chaperone activity of PBT2, its ability to attenuate Cu2+/A beta interactions, and its potential to promote neuroprotective and neuroregenerative effects.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据