4.7 Article

Variable Magnetic Interactions between S=1/2 Cation Radical Salts of Functionalizable Electron-Rich Dithiolene and Diselenolene Cp2Mo Complexes

期刊

INORGANIC CHEMISTRY
卷 52, 期 4, 页码 2162-2173

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ic3025606

关键词

-

向作者/读者索取更多资源

A series of Cp2Mo(dithiolene) and Cp2Mo(diselenolene) complexes containing N-alkyl-1,3-thiazoline-2-thione-4,5-dithiolate ligand (R-thiazdt, R = Me, Et, CH2CH2OH) and N-alkyl-1,3-thiazoline-2-thione-4,5-diselenolate ligand (R-thiazds, R = Me, Et) have been synthesized. These heteroleptic molybdenum complexes have been characterized by electrochemistry, spectroelectrochemistry, and single crystal X-ray diffraction. They act as very good electron donor complexes with a first oxidation potential 200 mV lower than in the prototypical Cp2Mo(dmit) complex and exhibit almost planar MoS2C2 (or MoSe2C2) metallacycles. All five complexes formed charge transfer salts with a weak (TCNQ) and a strong acceptor (TCNQF(4)), affording ten different charge-transfer salts, all with 1:1 stoichiometry. Crystal structure determinations show that the S/Se substitution in the metallacycle systematically affords isostructural salts, while the Cp2Mo(R-thiazdt) complexes with R equals ethyl or CH2CH2OH can adopt different structures, depending on the involvement of the hydroxyl group into intra- or intermolecular hydrogen bonding interactions. Magnetic susceptibility data of the salts are correlated with their structural organization, demonstrating that a face-to-face organization of the Me-thiazdt (or Me-thiazds) ligand favors a strong antiferromagnetic interaction, while the bulkier R = Et or R = CH2CH2OH substituents can completely suppress such intermolecular interactions, with the added contribution of hydrogen bonding to the solid state organization.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据