4.7 Article

Role of Cation Interactions in the Reduction Process in Plutonium-Americium Mixed Oxides

期刊

INORGANIC CHEMISTRY
卷 52, 期 6, 页码 2966-2972

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ic3023776

关键词

-

资金

  1. Nuclear Energy Division at CEA
  2. F-Bridge Project

向作者/读者索取更多资源

The oxygen to metal ratio (O/M) is directly related to oxygen potential, which strongly influences the sintering and irradiation performance of nuclear fuels. A better understanding of these two parameters is therefore of major interest. To further ascertain the correlation between O/M ratio and oxygen potential in Am-bearing MOX, several thermodynamic descriptions are being developed. Despite their differences, they all involve the valence of actinide cations (e.g., U, Pu, and Am) as essential parameters. However, as no experimental data on their valence are available, these models rely on assumptions. In the present work, we coupled X-ray diffraction and X-ray absorption spectroscopy to follow the behavior of Pu and Am in three hypo-stoichiometric, U-free Pu1-yAmyO2-x compounds. We provide for the first time a quantitative determination of Pu and Am valences, demonstrating that plutonium reduction from Pu4+ to Pu3+ starts only when americium reduction from Am4+ to Am3+ is completed. This result fills in an important gap in experimental data, thereby improving the thermodynamic description of nuclear fuels. At last, we suggest that the O/M ratio may evolve at room temperature, especially for high Am content, which is of main concern for the fabrication of Am-loaded MOX and their storage prior to irradiation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据