4.7 Article

Morphology-Controllable Synthesis of Cobalt Oxalates and Their Conversion to Mesoporous Co3O4 Nanostructures for Application in Supercapacitors

期刊

INORGANIC CHEMISTRY
卷 50, 期 14, 页码 6482-6492

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ic200309t

关键词

-

资金

  1. National Science Foundation for Distinguished Young Scholars of China [51025517]
  2. Innovative Group Foundation of NSFC [50721062]
  3. National 973 project of China [2007CB607606]

向作者/读者索取更多资源

In this work, one-dimensional and layered parallel folding of cobalt oxalate nanostructures have been selectively prepared by a one-step, template-free, water-controlled precipitation approach by simply altering the solvents used at ambient temperature and pressure. Encouragingly, the feeding order of solutions played an extraordinary role in the synthesis of nanorods and nanowires. After Calcination in air, the as prepared cobalt oxalate nanostructures were converted to mesoporous Co3O4 nanostructures while their original frame structures were well maintained. The phase composition, morphology, and structure of the as obtained products were studied in detail Electrochemical properties of the Co3O4 electrodes were carried out using cyclic voltammetry (CV) and galvanostatic charge-discharge measurements by a three electrode system. The electrochemical experiments revealed that the layered parallel folding structure of mesoporous Co3O4 exhibited higher capacitance compared to that of the nanorods and nanowires. A maximum specific capacitance of 202.5 F g(-1) hi been obtained in 2 M KOH aqueous electrolyte at a current density of 1 A g(-1) with a voltage window from 0 to 0.40 V. Furthermore, the specific capacitance decay after 1000 continuous charge-discharge cycles was negligible, revealing the excellent stability of the electrode. These characteristics indicate that the mesoporous Co3O4 nanostructures are promising electrode materials fog supercapacitors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据