4.7 Article

Combining Azide, Carboxylate, and 2-Pyridyloximate Ligands in Transition-Metal Chemistry: Ferromagnetic Ni5II Clusters with a Bowtie Skeleton

期刊

INORGANIC CHEMISTRY
卷 49, 期 22, 页码 10486-10496

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ic1014829

关键词

-

资金

  1. Cyprus Research Promotion Foundation [TECH-NO/0506/06]
  2. CICYT [CTQ2009-07264]
  3. Operational and Vocational Training II Program (PYTHAGORAS) [b.365.037]
  4. Office of Basic Energy Sciences of the U.S. Department of Energy [DE-AC02-05CH11231]

向作者/读者索取更多资源

The combined use of the anion of phenyl(2-pyridyl)ketone oxime (ppko(-)) and azides (N-3(-)) in nickel(II) carboxylate chemistry has afforded two new Ni-5(II) clusters, [Ni-5(O2CR')(2)(N-3)(4)(ppko)(4)(MeOH)(4)] [R' = H (1), Me (2)]. The structurally unprecedented {Ni-5(mu-N-3)(2)(mu(3)-N-3)(2)}(6+) cores of the two clusters are almost identical and contain the five Ni-II atoms in a bowtie topology. Two N-3(-) ions are end-on doubly bridging and the other two ions end-on triply bridging. The end-on mu(3)-N-3(-) groups link the central Ni-II atoms with the two peripheral metal ions on either side of the molecule, while the Ni center dot center dot center dot Ni bases of the triangles are each bridged by one end-on mu-N-3(-) group. Variable-temperature, solid-state direct(dc) and alternating-current (ac) magnetic susceptibility, and magnetization studies at 2.0 K were carried out on both complexes. The data indicate an overall ferromagnetic behavior and an S = 5 ground state for both compounds. The ac susceptibility studies on 1 reveal nonzero, frequency-dependent out-of-phase (chi(M)'') signals at temperatures below similar to 3:5 K; complex 2 reveals no chi(M)'' signals. However, single-crystal magnetization versus dc field scans at variable temperatures and variable sweep rates down to 0.04 K on 1 reveal no noticeable hysteresis loops, except very minor ones at 0.04 K assignable to weak intermolecular interactions propagated by nonclassical hydrogen bonds.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据