4.7 Article

Simultaneous Two-Hydrogen Transfer as a Mechanism for Efficient CO2 Reduction

期刊

INORGANIC CHEMISTRY
卷 49, 期 19, 页码 8724-8728

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ic100454z

关键词

-

向作者/读者索取更多资源

Two-hydrogen transfer (simultaneous protic and hydridic hydrogen transfer) is examined as a potentially efficient mechanism for the selective reduction of CO2 to methanol. High-level ab initio CCSD(T) coupled-cluster theory simulations of ammonia-borane (AB), which contains both protic and hydridic hydrogen, show the effectiveness of this mechanism. AB demonstrates how simultaneous two-hydrogen transfer is kinetically efficient because (1) two-hydrogen transfer avoids high-energy single-electron-reduced intermediates, (2) the CO2's HOMO is protonated while the LUMO is concurrently reduced by a hydride, and (3) complementary charge polarities around the six-membered-ring transition-state structures stabilize the transition states. This study suggests that an effective mechanism for the reduction of CO2 to methanol proceeds through three two-hydrogen-transfer steps and that suitable catalysts should be developed that exploit two-hydrogen transfer without the use of AB.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据