4.7 Article

Network Structured SnO2/ZnO Heterojunction Nanocatalyst with High Photocatalytic Activity

期刊

INORGANIC CHEMISTRY
卷 48, 期 5, 页码 1819-1825

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ic802293p

关键词

-

资金

  1. Department of Science of the People's Republic of China [20771025]
  2. Department of Science & Technology of Fujian Province [2005H201-2]

向作者/读者索取更多资源

A network-structured SnO2/ZnO heterojunction nanocatalyst with high photocatalytic activity was successfully synthesized through a simple two-step solvothermal method. The as-synthesized samples are characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, scanning electron microscopy, N-2 physical adsorption, and UV-vis spectroscopy. The results show that the SnO2/ZnO sample with a molar ratio of Sn/Zn = 1 is a mesoporous composite material composed of SnO2 and ZnO. The photocatalytic activity of SnO2/ZnO heterojunction nanocatalysts for the degradation of methyl orange is much higher than those of solvothermally synthesized SnO2 and ZnO samples, which can be attributed to the SnO2-ZnO heterojunction, the pore structure, and higher Brunauer-Emmeff-Teller (BET) surface area of the sample: (1) The SnO2-ZnO heterojunction improves the separation of photogenerated electron-hole pairs due to the potential energy differences between SnO2 and ZnO, thus enhancing the photocatalytic activity. (2) The SnO2/ZnO sample might possess more surface reaction sites and adsorb and transport more dye molecules due to the higher BET surface area and many pore channels, also leading to higher photocatalytic activity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据