4.7 Article

Thermodynamic, kinetic, and computational study of heavier chalcogen (S, Se, and Te) terminal multiple bonds to molybdenum, carbon, and phosphorus

期刊

INORGANIC CHEMISTRY
卷 47, 期 6, 页码 2133-2141

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ic701611p

关键词

-

向作者/读者索取更多资源

Enthalpies of chalcogen atom transfer to Mo(N[t-Bu]Ar)(3), where Ar = 3,5-C6H3Me2, and to IPr (defined as bis-(2,6-isopropylphenyl)imidazol-2-ylidene) have been measured by solution calorimetry leading to bond energy estimates (kcal/mol) for EMo(N[t-Bu]Ar)(3) (E = S, 115; Se, 87; Te, 64) and EIPr (E = S, 102; Se, 77; Te, 53). The enthalpy of S-atom transfer to PMo(N[t-Bu]Ar)(3) generating SPMo(N[t-Bu]Ar)(3) has been measured, yielding a value of only 78 kcal/mol. The kinetics of combination of Mo(N[t-Bu]Ar)(3) with SMo(N[t-Bu]Ar)(3) yielding (mu-S)[Mo(N[t-Bu]Ar)(3)](2) have been studied, and yield activation parameters Delta H double dagger = 4.7 +/- 1 kcal/mol and Delta S double dagger = -33 +/- 5 eu. Equilibrium studies for the same reaction yielded thermochemical parameters Delta H degrees = -18.6 +/- 3.2 kcal/mol and Delta S degrees = -56.2 +/- 10.5 eu. The large negative entropy of formation of (mu-S)[Mo(N[t-Bu]Ar)(3)](2) is interpreted in terms of the crowded molecular structure of this complex as revealed by X-ray crystallography. The crystal structure of Te-atom transfer agent TePCy3 is also reported. Quantum chemical calculations were used to make bond energy predictions as well as to probe terminal chalcogen bonding in terms of an energy partitioning analysis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据