4.7 Article

Transient intermediates from Mn(salen) with sterically hindered mesityl groups:: Interconversion between MnIV-phenolate and MnIII-phenoxyl radicals as an origin for unique reactivity

期刊

INORGANIC CHEMISTRY
卷 47, 期 5, 页码 1674-1686

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ic702061y

关键词

-

向作者/读者索取更多资源

In order to reveal structure-reactivity relationships for the high catalytic activity of the epoxidation catalyst Mn(salen), transient intermediates are investigated. Steric hindrance incorporated to the salen ligand enables highly selective generation of three related intermediates, O = Mn-IV(salen), HO-Mn-IV(salen), and H2O-Mn-III(salen(+center dot)), each of which is thoroughly characterized using various spectroscopic techniques including UV-vis, electron paramagnetic resonance, resonance Raman, electrospray ionization mass spectrometry, H-2 NMR, and X-ray absorption spectroscopy. These intermediates are all one-electron oxidized from the starting Mn-III(salen) precursor but differ only in the degree of protonation. However, structural and electronic features are strikingly different: The Mn-O bond length of HO-Mn-IV(salen) (1.83 angstrom) is considerably longer than that of O = Mn-IV(salen) (1.58 angstrom); the electronic configuration of H2O-Mn-III(salen(+center dot)) is Mn-III-phenoxyl radical, while those of O = Mn-IV(salen) and HO-Mn-IV(salen) are Mn-IV-phenolate. Among O = Mn-IV(salen), HO-Mn-IV(salen), and H2O-Mn-III(salen(+center dot)), only the O = Mn-IV(salen) can transfer oxygen to phosphine and sulfide substrates, as well as abstract hydrogen from weak C-H bonds, although the oxidizing power is not enough to epoxiclize olefins. The high activity of Mn(salen) is a direct consequence of the favored formation of the reactive O = Mn-IV(salen) state.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据