4.4 Article

Chondrogenic differentiation of umbilical cord-derived mesenchymal stem cells in type I collagen-hydrogel for cartilage engineering

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.injury.2012.09.024

关键词

Mesenchymal stem cell; Chondrogenesis; Hydrogel; Sox9; Osteogenesis; Umbilical cord; Aggrecan; Cartilage engineering

资金

  1. Beijing Municipal Natural Science Foundation [5072004]
  2. Beijing Municipal Education Committee Foundation [KM200710005008]

向作者/读者索取更多资源

Introduction: A potent mesenchymal stem cell (MSC) population was recently isolated from the Wharton's jelly of human umbilical cord (UC). The aim of the current experiments was to determine the potential of human UC-derived MSC (UC-MSC) in cartilage healing. Materials and methods: Chondrogenic differentiation of collagen hydrogel-embedded cells was induced in standard chondrocyte conditioning medium and further detected by real-time PCR, histochemistry and immunohistochemistry analyses. Cell viability and apoptosis of the MSCs in the collagen I hydrogels were monitored using apoptosis detection kit. Results: Cells isolated from UC were positive for MSC biomarkers and negative for haematopoietic lineage and endothelial biomarkers and possess the capacity to differentiate along osteogenic lineage. UC-MSCs embedded in collagen hydrogel can undergo chondrogenesis characterised by significantly increased expressions of collagen II, aggrecan, COMP (cartilage oligomeric matrix protein) and sox9 after exposed cells-embedded hydrogels to chondrogenic factors. The most of cells remained viable throughout the hydrogels after 3 weeks of cultivation in chondrogenic differentiation medium. Conclusions: Collagen hydrogel can provide an appropriate 3-D environment for the chondrogenesis of UC-MSCs. UC-MSCs embedded in biocompatible scaffold may have great potential for cartilage engineering. (C) 2012 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据