4.7 Article

Genetic interval neural networks for granular data regression

期刊

INFORMATION SCIENCES
卷 257, 期 -, 页码 313-330

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.ins.2012.12.049

关键词

Function approximation; Genetic algorithm; Granular computing; Interval analysis; Interval order relation; Neurocomputing

向作者/读者索取更多资源

Granular data and granular models offer an interesting tool for representing data in problems involving uncertainty, inaccuracy, variability and subjectivity have to be taken into account. In this paper, we deal with a particular type of information granules, namely interval-valued data. We propose a multilayer perceptron (MLP) to model interval-valued input-output mappings. The proposed MLP comes with interval-valued weights and biases, and is trained using a genetic algorithm designed to fit data with different levels of granularity. In the evolutionary optimization, two implementations of the objective function, based on a numeric-valued and an interval-valued network error, respectively, are discussed and compared. The modeling capabilities of the proposed MLP are illustrated by means of its application to both synthetic and real world datasets. (C) 2013 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据