4.7 Article

Acoustic feature selection for automatic emotion recognition from speech

期刊

INFORMATION PROCESSING & MANAGEMENT
卷 45, 期 3, 页码 315-328

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.ipm.2008.09.003

关键词

Emotion recognition; Feature selection; Machine learning

资金

  1. Deakin CRGS grant

向作者/读者索取更多资源

Emotional expression and understanding are normal instincts of human beings, but automatical emotion recognition from speech without referring any language or linguistic information remains an unclosed problem. The limited size of existing emotional data samples, and the relative higher dimensionality have outstripped many dimensionality reduction and feature selection algorithms. This paper focuses on the data preprocessing techniques which aim to extract the most effective acoustic features to improve the performance of the emotion recognition. A novel algorithm is presented in this paper, which can be applied on a small sized data set with a high number of features. The presented algorithm integrates the advantages from a decision tree method and the random forest ensemble. Experiment results on a series of Chinese emotional speech data sets indicate that the presented algorithm can achieve improved results on emotional recognition, and outperform the commonly used Principle Component Analysis (PCA)/Multi-Dimensional Scaling (MDS) methods, and the more recently developed ISOMap dimensionality reduction method. (C) 2008 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据