4.5 Article

Control of NOD2 and Rip2-dependent innate immune activation by GEF-H1

期刊

INFLAMMATORY BOWEL DISEASES
卷 18, 期 4, 页码 603-612

出版社

OXFORD UNIV PRESS INC
DOI: 10.1002/ibd.21851

关键词

Crohn's disease; NOD-like receptors; Src-kinase; tyrosine phosphorylation; innate immune regulation

资金

  1. National Institutes of Health [DK068181, DK033506, DK043351, DK074738]
  2. Spanish Gastroenterological Association
  3. American Gastroenterological Associations
  4. Ministry of Science and Innovation of Spain

向作者/读者索取更多资源

Background: Genetic variants of nucleotide-binding oligomerization domain 2 (NOD2) lead to aberrant microbial recognition and can cause chronic inflammatory diseases in patients with Crohn's disease (CD). Methods: We utilized gene-specific siRNA mediated knockdown and expression of guanine nucleotide exchange factor H1 (GEF-H1) in wildtype, Rip2-, and Nod2-deficient macrophages, HCT-116 and HEK 293 cells to determine the role of GEF-H1 in NOD2 and Rip2-mediated NF kappa B- dependent induction of proinflammatory cytokine expression. Confocal microscopy was used to determine subcellular distribution of GEFH1, Rip2, and NOD2. Results: We identified GEF-H1 as an unexpected component of innate immune regulation during microbial pattern recognition by NOD2. Surprisingly, GEF-H1-mediated the activation of Rip2 during signaling by NOD2, but not in the presence of the 3020insC variant of NOD2 associated with CD. GEF-H1 functioned downstream of NOD2 as part of Rip2-containing signaling complexes and was responsible for phosphorylation of Rip2 by Src tyrosine kinase. Rip2 variants lacking the tyrosine target of GEF-H1-mediated phosphorylation were unable to mediate NF-kappa B activation in Rip2-deficient macrophages and failed to transduce NOD2 signaling. GEF-H1 is required downstream of NOD2 as part of Rip2-containing signaling complexes for the activation of innate immune responses. Conclusions: GEF-H1 connects tyrosine kinase function to NOD-like receptor signaling and is fundamental to the regulation of microbial recognition by ubiquitous innate immune mechanisms mediated by Rip2 kinase.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据